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Some multistep methods are presented that are particularly well suited for integrating 
the equations of motion describing the molecular dynamics of liquids and dense gases. 
Some tests and comparisons with other methods are described which demonstrate that 
a combination of a third-order explicit method for the calculation of positions and an 
implicit method for the calculation of velocities is particularly stable when used in 
computations of this type. 

In the computer simulation of the molecular dynamics of simple liquids, one 
must numerically solve the second-order differential equation 

i; = a(r), (1) 

finding r(t) and v(t). Here, r, v, and a are vectors with 3N components, representing 
the x, y, and z components of the position, velocity, and acceleration of each of 
N molecules, where N is typically on the order of 1000. The acceleration of the 
ith molecule, at position ri , is given by a&) = -VV(rJm, where m represents 
the molecular mass. The potential energy of the ith molecule, V(rJ, is often 
approximated by the Leonard-Jones potential, 

V(r) = 4~ F (a/&j)12 - (u/&$, 
j=l 

(2) 

where Rig represents the distance between the ith and jth molecules. 
For argon, e/rC, = 119.8”K, and u = 3.4 A. As the evaluation of a(r) involves, 

in principle, a double summation over the N molecules, one wishes to minimize 
the number of times that a(r) must be calculated for each time step in the numerical 
integration of Eq. (1). For this reason, multistep methods, which make use of the 
evaluation of a(r) at previous time steps, are to be preferred over those methods 
that make successive approximations to a(r) or that require the calculation of 
derivatives of a(r). On the other hand, due to the size of the vectors r, v, and a 
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and the use of double precision arithmetic, core limitations may prevent the 
retention of information from very many previous steps. 

In his simulation of liquid argon, Rahman [l] used the midpoint method 
predictor, 

r n+l = I,-1 + 2hv, (3) 

and the second-order Moulton’s corrector, 

V n+l = v, + (a,+, + a,)W, W 
r n+l = r, + (v,+~ + v,NP. (4’3 

Here, h represents the size of the time step, h = t,+l - t, . Typically, two itera- 
tions of the corrector cycle were performed. This method will be referred to here 
as a P(r)@(a) C(v) C(I))~ method, meaning that a predictor is used to calculate r 
and that there are two iterations of the sequence: evaluation of a, calculation of v 
using a corrector, and calculation of r using a corrector. This method suffers 
from the disadvantage that it requires the simultaneous storage of six vectors and 
yet is only of second-order accuracy. 

One could extend this procedure to higher order by using the third-order 
Adams-Bashforth predictor, 

r - r, + (23v, - 16v,-, + 5v,-,)h/12 ni-1 - 

and the third-order Adams-Moulton correctors, 

(5) 

vn+1 = v, + (5a,+l + 8a, - a,dW, (64 
r - rn + (5v,+, + 8v, - v,-,)W. n+1 - VW 

For n iterations of the corrector cycle, the sequence of operations would be 
described as P(r)@(a) C(v) C(r))“. Unfortunately, this method requires the 
simultaneous storage of eight vectors. A fourth-order Adams predictor-corrector 
would require ten. 

The storage requirements for higher-order methods may be substantially reduced 
by going to direct methods for integrating Eq. (1) in one operation, rather than 
treating it as a system of two first-order equations. Verlet [2] has used Stiirmer’s 
third-order explicit formula, 

r n+l = 2r, - m-l + h2a, , (7) 

and the midpoint evaluation of v, 

v, = (r,+, - r,-lY(W (8) 

The use of this comparatively crude first-order method of calculating the velocities 
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does not threaten the stability of the procedure because the velocities do not 
appear in Eq. (7). As it only requires the storage of three vectors, it represents 
a considerable advantage over the use of Eqs. (5) and (6). On the other hand, 
with a large integration step, the error in v, may be quite large. If it is necessary 
to know the velocities of the molecules as well as the positions, this error may be 
excessive. Furthermore, it is often desirable to have v, appear in the predictor 
used to calculate r,+l , so that the temperature of the system may be adjusted 
by scaling the velocities of the molecules up or down by a constant factor. 

The advantages of Rahman’s procedure may be combined with those of Verlet’s 
by the use of a predictor of order q of the form 

9-l 
r n+1 = r, + hv, + h2 1 b9an-n+l Pa> 

P=l 

and the position and velocity correctors 

a-1 

r - r, + hv, -I- h2 C c,a,-,,, , n+1 - 
xl=1 
Q-1 

IIVW = r,,, - rn + h2 1 dDan-n+2 . 
p=1 

(9c) 

For a given order q, the coefficients b, , c, , and d, may be found by expanding 
all quantities in Eqs. (9a), (9b), and (SC) in a Taylor series about t, . 

For q = 3, one finds the predictor, 

r n+l = r, + hv, + @“/6>(4a, - a,-,) + (l/S) h4r$, (104 

and the correctors 

r n+l = r, + hv, + (h2/6)(a,+, + 2a3 - (l/W h4r?, (lob) 
hv,+l = rn+l - rn + (h2/6)(2a,+I + a,) - (l/24) h4rf). WC) 

The last term on the right-hand side of Eqs. (lOa), (lob), and (10~) represents the 
truncation error, where rp’ is the fourth time derivative of r, evaluated at t, . 
In a similar manner, one finds for q = 4, 

r n+l = rn + hv, + (h2/24)(19a, - lOa,-, + 3a,-,) + (19/180) h5r$‘, (1 la) 

r n+l = r, + hv, + (h2/24)(3a,+, + lOa, - a,-,) - (7/360) h5rf), (lib) 

and 

hvn+l = r,+, - r, + (h2/W(7an+l + 6a, - anml) - (l/45) h%t). (114 
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For (I = 5, one obtains 

r n+l = rn + hv, + (h2/360)(323a, - 264a,-, t 159a,-, - 38a,-,) 

+ (135/1440) h6r:), (124 

r n+l = rn + hv, + (h2/360)(38a,+, i- 171a,, - 36a,-, + 7a,-,) 

- (17/1440) h’r!), (12b) 

hv n+l = rn+l - rn t (h2/360)(97a,+, + 114a, - 39a,-, + San-,) 

- (19/1440) r$‘. WC) 

If Eqs. (1Oa) and (10~) are used in the sequence P(r) E(a) C(v), and v,+~ and rn 
are equivalenced so as to occupy the same storage location, four vectors are 
needed. The sequences P(r) E(a) C(r) C(v) and P(r) E(a) C(r) E(a) C(v) do not 
allow equivalencing of v,+l and r, and thus require five vectors. Similarly, the 
fourth-order direct method requires five vectors if only the predictor is used to 
calculate positions and requires six vectors if Eq. (llb) is used to correct the 
positions. The fifth-order direct method of Eq. (12) makes use of six vectors if 
the positions are not corrected and requires seven vectors if the position corrector 
is used. 

It may be shown [4, 51 that the Nordsieck method [6] of solving first-order 
ordinary differential equations (ODES) is fully equivalent to the Adams methods. 
The Nordsieck method has been extended to higher order ODES by Gear [4, 51, 
and has been used in molecular dynamics calculations [7]. It is of interest to 
determine what relationship Eqs. (lo)-(12) might have to the Nordsieck method. 

In the Nordsieck formulation, the solution for an ODE involving the variable y 
is expressed in terms of higher derivatives of y at the current time step, rather than 
in terms of y and its derivative evaluated at previous time steps. For a method 
that expresses yn+l in terms of q + 1 quantities, one defines the column vector 

a, = (yn , hy,‘, h2yL/2 ,..., h’y;‘/q!). (13) 

The predicted values of Y,+~ and its derivatives are given by 

(9) an+, = Aa,, (14) 

where A is the Pascal triangle matrix. The corrector is 

a(c) 
n+l = an+1 (~4 + F(a$fI). 

For the second-order ODE y” = f(y), the correction term is 

&i%‘Z,) = h2[f(.d$d - Y~~~I/~. 

(15) 

581/20/2-z 
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The column vector I gives the coefficients of the correction term. For q = 3, 
I = (l/6, 5/6, 1, l/3). For q = 4, I = (19/120, 3/4, 1, l/2, l/12), and for q = 5, 
C = (3/20,251/360, 1, II/l& l/6, l/60). By a straightforward application of the 
transformation discussed in [5, Chap. 91, one may find an equivalent representation 
of Eqs. (14) and (15) in terms of yn , yn’, yi , and past values of y”. For q = 3, 4, 
and 5, the predictor yields yp$ of the form of Eqs. (lOa), (lla), and (12a). On the 
other hand, the corrector gives, for these three cases, 

Y% = yn + hy,’ + W12)(fn+l + 6fn -IA) + W24)fK (16) 

y:jml == yn + hyn’ + @‘/240)(19f,+, + 133f, - 43j;-, + 1 lfn-J 

+ (19/720) h’y’y’5’, (17) 
Cc) 

~n+l = in + bn' + (h2/36W7fn+~ f 215f, - 102f,-, + 5lf,-, - llfn-,) 

+ (3/160) hsf;‘. (18) 

For q = 3, JI;$ is of the form of Eq. (6a), the third-order Adams-Moulton 
corrector. Similarly, q = 4 and 5 yield the fourth- and fifth-order Adams-Moulton 
expressions. 

Reference [4] presents an alternate choice for ZO, the first component of I. 
For q = 4, I0 = 19/90 may replace 19/120, and for q = 5, one may use I, = 3/l 6 
in place of 3120. With q = 4 and I0 = 19/90, one obtains the position corrector, 
Eq. (12b). The Adams-Moulton velocity corrector remains unchanged. Although 
the local truncation error of Eq. (12b) is one order higher than that of Eq. (17) 
the global error of the method is of one order lower than with 1, = 19/120 [4]. 
In molecular dynamics simulations of water, Rahman and Stillinger [7] have 
used I, = 3/16 with q = 5. This results in a position corrector of the form of 
Eq. (9b) with q = 6. Again, a smaller local truncation error is achieved at the 
cost of a larger global error. 

The third-order direct method algorithm P(r) E(a) C(v) was used by the author 
in molecular dynamics simulations of liquid argon performed at Harwell [3]. 
The method seemed unusually stable compared to other algorithms, but at the 
time, no detailed comparisons were made. Recently, a series of tests was performed 
in order to compare the third-, fourth-, and fifth-order direct methods given 
above, with and without position corrector, Rahman’s method, Verlet’s method, 
the third-order Adams predictor-corrector, and the Nordsieck method for second- 
order ODES. 

A system of 108 atoms was used. The interaction was given by Eq. (2), with 
parameters appropriate to liquid argon. The density of the system was set at 
0.9418 g/cm3, and the velocities were adjusted so that the system reached equi- 
librium at a temperature of about 140°K. Under these conditions, the average 
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energy per atom was approximately -227°K. This corresponds to a point on the 
argon vapor pressure curve near the critical point, but sufficiently removed so 
as to avoid the large statistical fluctuations encountered at the critical point. In 
the first test, 60 integration steps with h = 1.0 x lo-l4 set were used with the 
third-, fourth-, and fifth-order direct method (Eqs. (lo), (1 l), and (12), respec- 
tively) in both the sequence P(r) E(a) C(v) and P(r) E(a) C(r) E(a) C(v). For 
comparison, the computation was also carried out using one, two, three, and 
four iterations of both Rahman’s predictor-corrector (Eqs. (3) and (4)) and the 
third-order Adams predictor-corrector (Eqs. (5) and (6)). Note that Eq. (lOc), 
which gives h~,+~ to third-order accuracy, is of the same order of accuracy as 
Eqs. (1Oa) and (lob), although it gives v,+~ to only second-order accuracy. It 
would seem reasonable that the accuracy of the third-order P(r) E(a) C(v) algo- 
rithm could be improved by using the third-order Adams-Moulton velocity 
corrector, Eq. (6a), instead of Eq. (10~). Accordingly, this sequence was also 
tried, in spite of the fact that it requires the storage of an additional vector. The 
average energy per atom was calculated at each integration step. For each method, 
this information was used to calculate the standard deviation in energy over the 
60 steps, uE ; the mean of the absolute values of the energy change at each step, 
(I AE I/step); and the mean rate of energy change per step, (AE/step), obtained 
from the slope of a linear least squares fit to the energy per atom as a function 
of the number of integration steps. The results of this test are summarized in 
Table I. 

As one might expect, all of the higher-order direct methods had a smaller mean 
absolute value of energy change per step than the third-order P(r) E(a) C(v). 
With the exception of the fourth-order P(r) E(a) C(v), they also had a smaller 
standard deviation in average energy per atom, and a smaller drift in energy, as 
measured by (A-E/step). Rahman’s procedure required at least two iterations of 
the corrector cycle for reasonable energy conservation, but with two or more 
iterations, it seemed to perform better than the direct methods. The Adams 
third-order predictor-corrector showed the best energy conservation of all the 
methods tested, even with only one corrector cycle. The P(r) E(a) C(v) sequence 
using the third-order position predictor of Eq. (lOa) and the Adams-Moulton 
velocity corrector of Eq. (6a) was slightly inferior to the sequence using Eqs. (lOa) 
and (10~). 

Because of the hardness of the repulsive interaction of Eq. (2) and the high 
temperature used, it was suspected that the lower-order methods might perform 
better when a large time step was used. In this case, the information provided by 
the acceleration at previous integration steps would be of lesser relevance. To 
test this hypothesis, k was increased to 3.0 x lo-l4 see, and 30 integration steps 
were performed. The same algorithms were tested, as well as the third-order direct 
method, P(r) E(a) C(r) C(v). It was hoped that this last method would provide 
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TABLE I 

Sixty Steps with h = 1.0 x 10-l* set 

Algorithm MK) (I AE I/step)CK) <AE/stepX”K) 

Equation 

(10) 3rd-order P(r)E(a)C(v) 
(10) 3rd-order P(r)E(a)C(r)E(a)C(v) 
(11) 4th-order P(r)E(a)C(v) 
(11) 4th-order P(r)E(a)C(r)E(a)C(v) 
(12) Sth-order P(r)E(a)C(v) 
(12) Sth-order P(r)E(a)C(r)E(a)C(v) 

Rahman method (iterations) 

1 
2 
3 
4 

Adams 3rd order (iterations) 

1 
2 
3 
4 

P(r)E(a)C(v) with Eqs. (lOa) and (6a) 

0.086 0.0068 -0.0045 
0.056 0.0058 -0.0035 
0.092 0.0063 -0.0057 
0.052 0.0056 -0.0031 
0.086 0.0058 -0.0041 
0.080 0.0056 -0.0040 

0.229 0.0116 -0.0130 
0.065 0.0056 -0.0032 
0.061 0.0057 -0.0033 
0.051 0.0057 -0.0033 

0.056 0.0059 -0.0029 
0.033 0.0055 -0.0023 
0.061 0.0055 -0.0023 
0.065 0.0055 -0.0023 

0.092 0.0064 -0.0056 

more accuracy than the third-order P(r) E(a) C(v) sequence without the necessity 
of evaluating the accelerations twice. Table II summarizes the results of this test. 
As suspected, the higher-order algorithms show some stability problems with this 
large step size. Although the average magnitude of the energy change per step is 
smaller for the fourth- and fifth-order methods, only the fifth-order P(r) E(a) C(r) 
E(a) C(v) method shows a smaller standard deviation in energy than the third- 
order P(r) E(a) C(v), with a comparable mean rate of energy change per step. 
The third-order P(r) E(a) C(r) C(v) method was substantially worse. Although 
the third-order P(r) E(a) C(r) E(a) C(v) sequence showed the best energy conserva- 
tion of any of the algorithms tested, it was only slightly better than the third-order 
P(r) E(a) C(v) method and required twice as many evaluations of a. Although 
the Adams predictor-corrector was also of third-order accuracy, it showed a large 
variation in energy as well as a sizable drift, even after three or four corrector 
cycles. Rahman’s method required three evaluations of a to obtain the accuracy 
of the third-order direct method, P(r) E(a) C(v). With this step size, the 
P(r) E(a) C(v) sequence with Eqs. (lOa) and (6a) showed severe stability problems. 
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TABLE II 

Thirty Steps with h = 3.0 x IO-14sec 

Algorithm MK) <I AE l/stepX’K) <AE/stepXK) 

Equation 

(10) 3rd-order P(r)E(a)C(v) 
(10) 3rd-order P(r)E(a)C(r)C(v) 
(10) 3rd-order P(r)E(a)C(r)E(a)C(v) 
(11) 4th-order P(r)E(a)C(v) 
(11) 4th-order P(r)E(a)C(r)E(a)C(v) 
(12) Sth-order P(r)E(a)C(v) 
(12) Sth-order P(r)E(a)C(r)E(a)C(v) 

Rahman method (iterations) 

1 
2 
3 
4 

Adams 3rd order (iterations) 

1 
2 
3 
4 

P(r)E(a)C(v) with Eqs. (10a) and (6a) 

0.237 0.130 -0.019 
0.685 0.114 -0.075 
0.219 0.077 +0.014 
1.218 0.167 -0.137 
0.692 0.091 +0.076 
0.463 0.123 -0.047 
0.191 0.047 +0.020 

4.970 0.560 -0.563 
0.596 0.104 +0.061 
0.262 0.076 $0.021 
0.292 0.078 +0.024 

1.479 0.218 -0.166 
1.455 0.176 +0.164 
1.256 0.150 +0.142 
1.270 0.152 +0.143 

1.192 0.145 -0.133 

Although the test just described is suggestive, the fact that an algorithm may 
appear fairly stable over 30 integration steps is no guarantee that it will perform 
equally well over the much longer time spans used in molecular dynamics calcula- 
tions. Therefore, more extended tests were made on those algorithms that per- 
formed well on the test with h = 3.0 x lo-l4 sec. In this series, the Nordsieck 
methods were also included for comparison. Table III summarizes the results of 
runs of 300 integration steps with h = 3.0 x lo-l4 set for the third- and fifth-order 
direct methods and the Nordsieck methods discussed above. The superiority of 
the third-order P(r) E(a) C(v) sequence to the other direct methods is clearly 
evident. Not only does it have the smallest standard deviation in energy, but the 
energy drift is barely larger than the statistical uncertainty in the drift. This result 
is consistent with the author’s experience with this algorithm in more extended 
molecular dynamics calculations. A system of 500 argon-like atoms with a density 
of 1.266 gm/cm3 and temperature of 108.3% showed no discernible drift in 
energy over 2000 integration steps with h = 3.0 x lo-l4 sec. The Nordsieck 
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TABLE III 

Three Hundred Steps with h = 3.0 x 10-l* set 

Algorithm 

Equation 

(10) 3rd-order P(r)E(a)C(v) 
(10) 3rd-order P(r)E(a)C(r)C(v) 
(10) 3rd-order P(r)E(a)C(r)E(a)C(v) 
(12) Sth-order P(r)E(a)C(v) 
(12) Sth-order P(r)E(a)C(r)E(a)C(v) 

Nordsieck method 

q = 3, z, = l/6 
q = 4, I,, = 19/120 
q = 5, I, = 3120 
q = 4, lo = 19190 
q = $1, = 3116 

0.324 -0.0008 f 0.0007 
10.587 -0.1200 * 0.0013 
0.636 -0.0060 * 0.0007 
6.614 -0.0750 f 0.0009 
3.022 -to.0342 f 0.0005 

5.973 -0.0674 i 0.0008 
0.277 +0.0015 f 0.0005 
3.756 $0.0424 + 0.0008 
3.074 +0.0347 f 0.0007 
4.532 -to.0513 * o.ooo9 

methods all had a much larger standard deviation in energy and energy drift than 
the third-order P(r) E(a) C(v) sequence, with the exception of the case, 4 = 4, 
I, = 19/120. This case showed a slightly smaller standard deviation in energy, 
with a larger drift in energy. As the method requires the storage of one more 
vector than the third-order P(r) E(a) C(v) sequence, there would be no advantage 
in its use. The higher accuracy associated with the values of I given in [5] 
(I0 = 19/120 instead of 19/90 for q = 4, and I, = 3/20 instead of 3/16 for q = 5) 
is also evident from these tests. 

In addition to the tests described above, 30 integration steps with 
h = 3.0 x lo-l4 set were performed with the combination of Eqs. (7) and (8) 
used by Verlet. Although there was little overall drift in energy, there were signifr- 
cant deviations in energy and temperature at each step from the values calculated 
using the third-order P(r) E(a) C(v) direct method. The average energy calculated 
over the 30 steps differed by about l.O”K for the two methods. The average 
magnitude of the temperature difference at each step was 1.3”K. This was not 
considered to be a fair test of the accuracy of the method, because the variations 
in energy of the system were primarily due to the inaccuracy of Eq. (8), which is 
used to calculate the velocities. As Eq. (7) which calculates the positions, does 
not make use of the velocities, these errors are not propagated. In order to 
provide a better test of Eq. (7), 300 integration steps were performed with 
h = 3.0 x lo-l4 set, using Eq. (7) to calculate the positions, but using Eq. (1Oc) 
to calculate the velocities. When this was done, all measurements of the energy 
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and its variation were the same as those listed in Table I for the direct third-order 
P(r) E(a) C(v) method. The positions calculated by the two algorithms showed 
differences of about one part in lo6 by the end of 300 steps. This very slight dis- 
crepancy is evidently due to roundoff error, as Eqs. (1Oa) and (1Oc) may be com- 
bined to give Eq. (7), with the same truncation error. (All calculations were carried 
out using double-precision arithmetic.) 

From these tests, one may conclude that the combination of Eqs. (lOa) and (10~) 
provides a very stable and efficient method of integrating the equations of motions 
of particles interacting with steeply repulsive forces. Although the method is 
equivalent to the third-order Stormer method of Eq. (7), it is much more useful 
for calculations of this type because it permits an accurate determination of 
velocities with a large integration step. It offers the additional convenience of using 
the velocities in a way that facilitates the adjustment of the temperature of the 
system. As the fourth- and fifth-order algorithms of Eqs. (11) and (12) have 
smaller truncation errors and show better energy conservation from step to step, 
it is possible that they may be useful for systems involving more slowly varying 
potentials. A possible application might be the study of a collection of bodies at 
low density interacting via coulombic or gravitational forces. 
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